

# Report on Carcinogens Draft Substance Profile on o-Nitrotoluene

Gloria D. Jahnke, DVM
National Institute of Environmental Health Sciences
NTP Board of Scientific Counselors Meeting
Research Triangle Park, NC
February 24, 2009





### o-Nitrotoluene CAS No. 88-72-2

**2-nitrotoluene**; 2-Methyl-1-nitrobenzene; 2-methylnitrobenzene; o-nitrophenylmethane; 2-nitrotoluene; 2-nitrotoluol; alpha-methylnitrobenzene; 1-methyl-2-nitro-benzene; methylnitrobenzene; ONT





#### **Objectives**

To present the science that supports the preliminary listing recommendation for *ortho*-nitrotoluene in the 12th RoC as *Reasonably Anticipated to be a Human Carcinogen* 

- Information on use and exposure in US
- Cancer studies in humans and experimental animals
- Mechanistic evidence that supports the recommendation



#### Uses

- o-Nitrotoluene (o-NT) is a chemical intermediate used in the synthesis of azo dyes, magenta dyes, and sulfur dyes.
- It is also used (either directly or as an intermediate) in the production of explosives, agricultural chemicals, pesticides, petrochemicals, pharmaceuticals, and rubber products.



#### Significant U.S. Exposure

- High production volume chemical; in US, 10-50 million pounds per year (2002)
- Occupational exposure during chemical production and use as an intermediate; detected in workplace air
- Detected in groundwater, surface water, and soil at or near munitions production and military training facilities



#### **Human Cancer Studies**

- Data from the studies inadequate to evaluate the relationship between human carcinogenicity and exposure specifically to o-NT
- · Three studies of magenta manufacturing workers
  - Findings of excess risk of bladder cancer
  - Only one study noted o-NT exposure; however, workers also exposed to other aromatic hydrocarbons



### Sufficient Evidence from Studies in Experimental Animals

#### **Early Onset of Tumors**

NTP subchronic feed studies in rats (F344/N) and mice (B6C3F<sub>1</sub>)

13-wk exposure (both sexes)

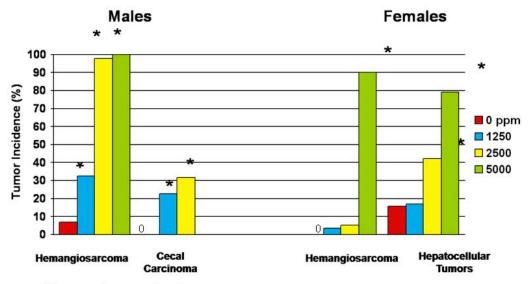
- mesothelioma of tunica ∨aginalis of testis in rats

26-wk exposure or 13-wk exposure & 13-wk recovery period (male rats only)

 mesothelioma of tunica ∨aginalis of testis & cholangiocarcinoma of the liver in male rats



#### Sufficient Evidence from Studies in Experimental Animals


#### Tumors at multiple sites

NTP chronic feed studies in rats (F344/N) and mice (B6C3F<sub>1</sub>)

- Two-year exposure (both sexes)
- 13-wk exposure & recovery period to two years (male rats only)

NTP conclusion: clear evidence of carcinogenicity in rats and mice for both sexes

#### Tumors in Mice Following Dietary Exposure to o-Nitrotoluene For Two Years



- · Dose-dependent responses
- · Tumors in males and females at multiple sites

Survival-Adjusted incidence, \*P<0.001



### Tumors in Rats Following Dietary Exposure to o-Nitrotoluene for Up to Two Years

| Tissue                        | Males<br>Chronic 13 wk Exposure |   | Females<br>Chronic |
|-------------------------------|---------------------------------|---|--------------------|
| Malignant Mesothelioma        | +                               | + | -                  |
| Mammary Gland<br>Fibroadenoma | +                               | + | +                  |
| Subcutaneous                  |                                 | - |                    |
| Lipoma                        | +                               | + | -                  |
| Fibroma/Fibrosarcoma          | +                               | + | +                  |
| Hepatocellular Tumors         | +                               | + | +                  |
| Cholangiocarcinoma            | _                               | + | -                  |
| Lung Tumors                   | _                               | + | _                  |

Tumors at multiple sites in males and females

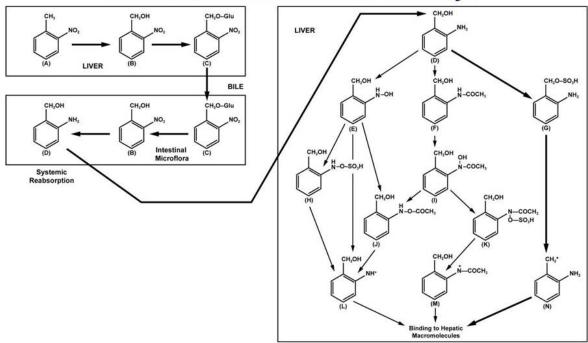


#### **Mechanistic Evidence**

- Urinary metabolites
- Proposed bioactivation pathways
- Evidence for other proposed mechanisms



# **Urinary Metabolites**


| Metabolite               | Humans | Rats | Mice |
|--------------------------|--------|------|------|
| o-Nitrobenzoic Acid      | +      | +    | +    |
| o-Nitrobenzyl Alcohol    | +      | +    | -    |
| o-Nitrobenzylglucuronide | NR     | +    | +    |
| o-Aminobenzyl Alcohol    | NR     | +    | -    |

NR=Not Reported

- = Metabolite not found



## **Potential Bioactivation Pathways**



Adapted from Chism & Rickert (1985)



#### **Supporting Mechanistic Data**

- Intestinal bacteria necessary for bioactivation
  - Did not induce repair in human or rat hepatocytes in vitro
  - DNA adducts and increased repair in liver of male rats, but not germ-free male rats
- Hepatic DNA adducts increased with o-NT dose



#### **Supporting Mechanistic Data**

# Carbonium and nitrenium ions of 2-methylaniline form hemoglobin adducts and DNA adducts

- 2-Methylaniline hemoglobin adducts and DNA adducts identified in rats exposed to o-NT
- Hemoglobin adduct levels proportional to DNA adduct levels in the liver

# Evidence that human exposure results in production of reactive metabolites

2-Methylaniline hemoglobin adducts detected in workers



#### Other Mechanisms of Carcinogenesis

- Tumors found in both sexes at multiple sites in rodent studies
  - Neither o-aminobenzyl alcohol nor its metabolites detected in mouse urine after o-NT exposure
- Mutations in p53, beta-catenin, K-ras genes in o-NT induced hemangiosarcomas and colon tumors (mice)
  - p53 and K-ras mutations consistent with targeting of guanine DNA adduct formation



## Proposed o-Nitrotoluene Listing

o-Nitrotoluene is reasonably anticipated to be a human carcinogen based on sufficient evidence of carcinogenicity from studies in experimental animals and supporting mechanistic data.